Molecular Pathogenesis of Parkinson's Disease and Therapeutic Strategies

M. Maral Mouradian, M.D.

William Dow Lovett Professor of Neurology Vice Chancellor for Faculty Development Director, RWJMS Institute for Neurological Therapeutics Chief, Division of Translational Neuroscience Robert Wood Johnson Medical School Rutgers Biomedical and Health Sciences

> Institute for Health, Health Care Policy and Aging Research, RBHS October 18, 2018

Pathology of Parkinson's Disease

Control

Parkinson

In Vitro Fibrillization of α -Synuclein

WT 300 µM 4 months

A53T 100 μM 1 month

A30P 300 μM 4 months

Conway, Biochemistry 39:2552, 2000

Staging PD: Pre-Symptomatic and Symptomatic Phases

Braak et al, Cell Tissue Res. 318:121, 2004

α-Synuclein Seeding and Propagation

Oueslati et al, Exp. Neurobiol. 2014

Commonalities of Misfolded Proteins and Hyper-phosphorylated Aggregates in Synucleinopathies and Taupathies

Tau Neurofibrillary tangles

Amyloid plaque

Consequences of Increased α -Synuclein Levels in Neurons

- Misfolding and aggregation
- Permeabilization of synaptic vesicles leading to dopamine leakage
- Oxidative stress
- Disruption of vesicular trafficking between the endoplasmic reticulum (ER) and the Golgi, causing ER stress
- Interference with autophagy
- Impaired proteasome function
- Interaction with other proteins

Reducing α-synuclein levels can be beneficial

Reducing α-Synuclein Levels as a Therapeutic Strategy

- Reduce production

 Inhibit transcription
 Inhibit translation
 - Enhance clearance
 Autophagy
 Proteasome

MicroRNA

- Small noncoding RNA molecules
- Regulate gene expression post-transcriptionally

MicroRNA-7 Reduces α-Synuclein Protein Levels and Protects against its Toxicity

Junn et al, PNAS, 106(31): 13052, 2009

α -Synuclein Phosphorylation as a Therapeutic Target in PD and DLB

Misfolded α -Synuclein is Phosphorylated in α -Synucleinopathies

Human DLB

Mice

WT

α-Synuclein^{⊤g}

LB509

Anti-p-Ser129

Anti-p-Ser129

Fujiwara et al NCB 4:160, 2002

Lee...Mouradian, J. Neurosci. 31: 6963, 2011

α-Synuclein Phosphorylation Promotes its Fibrillization in vitro

Fujiwara et al NCB 4:160, 2002

Therefore,

Decreasing the Phosphorylation State of

 α -Synuclein is a Plausible

Therapeutic Strategy

PP2A B55 α is the Major Ser/Thr Phosphatase for α -Synuclein

Methylation Affects PP2A-B55 α Holoenzyme Assembly

An Approach to Promote PP2A Activity

EHT Keeps PP2A Methylated leading to De-Phosphorylation of α-Synuclein

PP2A Demethylation Inhibitor

EHT Modulates PP2A Methylation and Reduces α -Synuclein Aggregation in α -Syn Transgenic Mice

- Inhibits PP2A demethylation
- Reduces α-synuclein S129 phosphorylation
- Reduces α-synuclein oligomers

Lee et al, J. Neurosci. 31(19): 6963, 2011

EHT Treatment Improves the Neuropathology of α -Synuclein Transgenic Mice

 α -Syn^{Tg}

Lee et al, J. Neurosci. 31(19): 6963, 2011

What drives hyper-phosphorylation of pathogenic proteins in α -synucleinopathies and tauopathies?

PP2A is De-Methylated in α-Synucleinopathies

Park H.-J. et al, Ann. Clin. Transl. Neurol., 3(10):769, 2016

Dysregulation of PP2A Methylating Enzymes in a-Synucleinopathies

Park H.-J. et al, Ann. Clin. Transl. Neurol., 3(10):769, 2016

PP2A is DeMethylated in Tauopathies

Park H.-J. et al, J. Neuropathol. Exp. Neurol, 77(2):139, 2018

PP2A Methylating Enzymes are Dysregulated in Alzheimer and PSP

Controls

Controls

PSP

PSP

AD

Park H.-J. et al, J. Neuropathol. Exp. Neurol, 77(2):139, 2018

Dysregulation of PP2A Methylation Leads to Hyper-Phosphorylation of α-Synuclein & tau

a-Synucleinopathy / Tauopathy

Summary

- Considerable molecular similarities exist among neurodegenerative diseases of aging
- Protein misfolding and fibrillization are considered pathogenic
- Increased levels of these proteins and their hyperphosphorylation accelerate their misfolding
- Both these factors are tractable therapeutic targets for disease prevention and disease modification