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What is the brain’s large-scale
functional architecture?

e Systems as graph

communities

— Clusters of highly
interconnected
nodes

“Community
detection”
algorithms

Applied to whole-
brain resting-state
fMRI graphs

(Ji et al., in press)

— Regions defined by
Glasser et al., 2016
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Subcortical extension of
cortical networks

Available for download:

www.colelab.org/#resources

Ji et al. (In Press), Neurolmage


http://www.colelab.org/#resources

What is functional connectivity,

why does it matter?

Typical FC definition:
“Statistical association between neural time series”

— What does this mean, mechanistically?
To the extent that FC = causal interaction between
neural entities...

— Central to neural function, computation

— Neurons compute based on input patterns

— No neuron acts alone

— No million-neuron circuit acts alone

How to make sense of large-scale FC? Analyze patterns

— Graph theory (e.g., hubs, communities),
machine learning (link activity/FC patterns to cognition)



Overview

. Cognitive activations spread via resting-state
FC topology

. Predicting unhealthy aging-related cognitive
activation changes



Resting-state FC and cognition

e Bifurcation into resting[]\/_

state FC vs. task-evoked
activation studies

e Rest FC patterns similar to
task-evoked activation

patterns
(Smith et al., 2009)

e But why?

— Need mechanism linking
rest FC and activations




Highly similar FC patterns across mental states
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Activity flow mapping

Prediction of

held-out activity in

j's predicted activity = ¥ (r s activity x Connectivity i-with J)

i=f

Using resting-state FC
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Activity flow mapping with
multiple regression FC
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Activity flow mapping using
multiple regression

Using resting-state FC Motor task
Predicted activation pattern Actual activation pattern

fMRI activation amplitude (z-normalized)
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Cole et al., 2016; Nature Neuroscience =



Activity flow mapping using
multiple regression

Using resting-state FC Reasoning task

Predicted activation pattern Actual activation pattern
r=0.95
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fMRI activation amplitude (z-normalized)
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Overview

. Cognitive activations spread via resting-state
FC topology

. Predicting unhealthy aging-related cognitive
activation changes
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Predicting unhealthy aging-related
cognitive activations

‘Dysfunctional’ rest FC
(preclinical FC matrix)

Healthy activation

O disrupted activity flow

between regions I

Subject characteristics: 101 cognitively-typical older adults,
preclinical based on beta amyloid deposits or APOE genetic status

Preclinical activation

TR

Mill et al., in preparation
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Predicting unhealthy aging-related
cognitive activations

Prediction of

Preclinical (APOE) VS held-out activity in j Key for parameters:
) ity flow |
healthy 0|de|’ adults AM” i . = Healthy older adult activity (group mean) in region i

i ——— = Preclinical older adult rest FC (subject) for ij

i . = Preclinical older adult activity (subject) in region |
j’s predicted activity = ¥ (i’s activity x Connectivity i-with-j) !
i :

Regionwise

Stroop task

Stroop contrast
Pred. preclinical > healthy Actual preclinical > healthy

Pred. Actual

4%

Overlap
Group: r =71, p <.00001
Subj. RFX: r=.19, p <.00001

Mill et al., in preparation
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Take-home messages

e Large-scale FC provides insights into the
neural mechanisms of cognition

e Activity flow mapping helps determine
role of connectivity in cognitive task
activations

— Resting-state FC highly relevant to cognition

 Applied to aging research, activity flow
provides insights & useful predictions



f Integrative idea G &

e Rutgers-wide “big data” database for older adult
recruitment and assessment

— Include younger adults for matched aging controls,
longitudinal studies (eventually they will be older!)

— Healthy & unhealthy aging
— State-wide practical: NJ most densely-populated state

e Study recruitment highly efficient, more valid

e More studies possible:
Special subpopulations identifiable

e More comprehensive assessment:
Pool data across studies for same individuals

e Substantial advantage to Rutgers aging research
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